Safe water provision for Northern Ghana

David Barnes ~ Clair Collin ~ Sara Ziff

MIT M.Eng. Thesis Final Presentations April 24, 2009

Project Aim

Work with Pure Home Water (PHW), a Northern Ghana-based social enterprise marketing safe water technologies

Work towards PHW goal:

Safe water for 1 million people in Northern Ghana over next 5 years

Research additional safe water technologies for Northern Ghana, where 50% lack access to improved water source

Water Challenges in Northern Ghana

Poverty

- Low cost options required
- High turbidity water (>50 NTU)
 - Difficult to treat
- Lack of water-infrastructure
 - Household scale technologies
- Water-based disease prevalence
 - Guinea worm
 - Diarrhea

Addressing drinking water needs in Northern Ghana

Technologies to improve water quality

- Biosand filter Clair Collin
- Siphon filter Sara Ziff

Mitigating water scarcity

 Rainwater harvesting – David Barnes

Clair Collin

Biosand filtration of high turbidity water:

Modifications to standard filter design and safe storage of filtrate

Presentation Overview

Aims of research

Part I

- Biosand filter (BSF)
 - Overview of BSF technology
 - Design modification options research
 - Selected design optimization
 - Recommended BSF design

Part II

- Safe filtrate storage
 - Necessity for safe filtrate storage
 - Safe storage options
 - Recommended safe storage system
- Integrated BSF and safe filtrate storage system

Presentation Overview

Aims of research

Part I

- Biosand filter (BSF)
 - Overview of BSF technology
 - Design modification options research
 - Selected design optimization
 - Recommended BSF design

Part II

- Safe filtrate storage
 - Necessity for safe filtrate storage
 - Safe storage options
 - Recommended safe storage system
- Integrated BSF and safe filtrate storage system

Aims of research

Design a modified biosand filter for treating high turbidity water

Recommend method for safe storage of filtrate

Low cost system using locally sourced materials

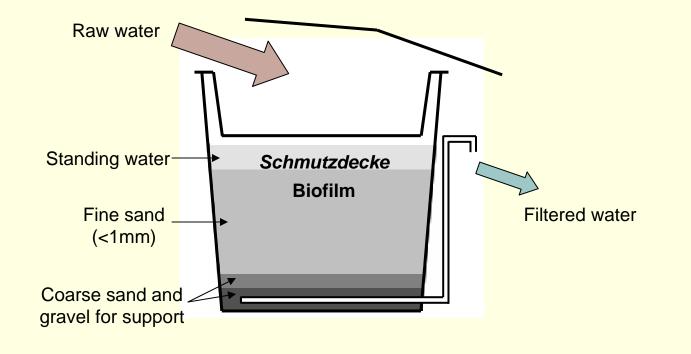
Presentation Overview

Aims of research

Part I

Biosand filter (BSF)

- Overview of BSF technology
- Design options research
- Selected design optimization
- Recommended BSF design


Part II

- Safe filtrate storage
 - Necessity for safe filtrate storage
 - Safe storage options
 - Recommended safe storage system
- Integrated BSF and safe filtrate storage system

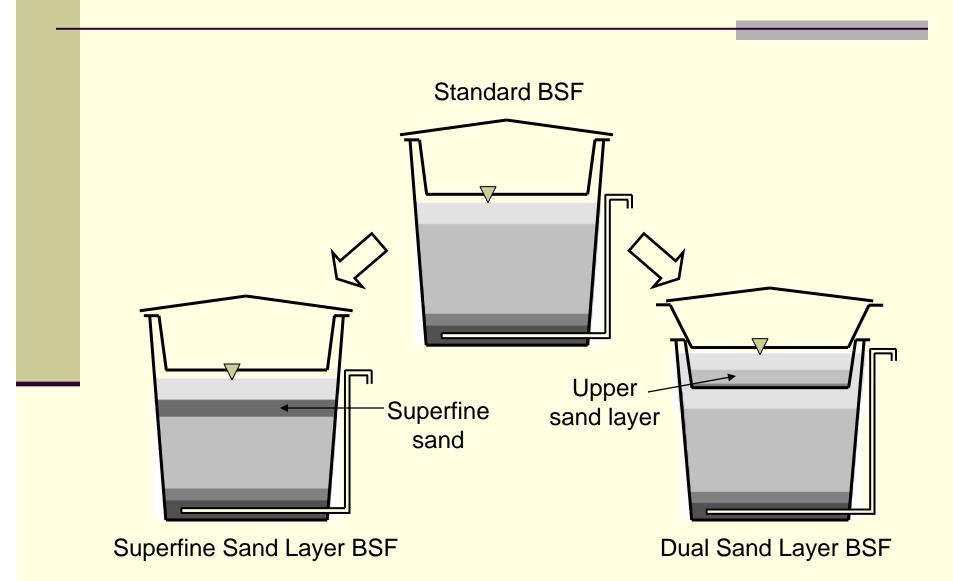
Biosand filter technology

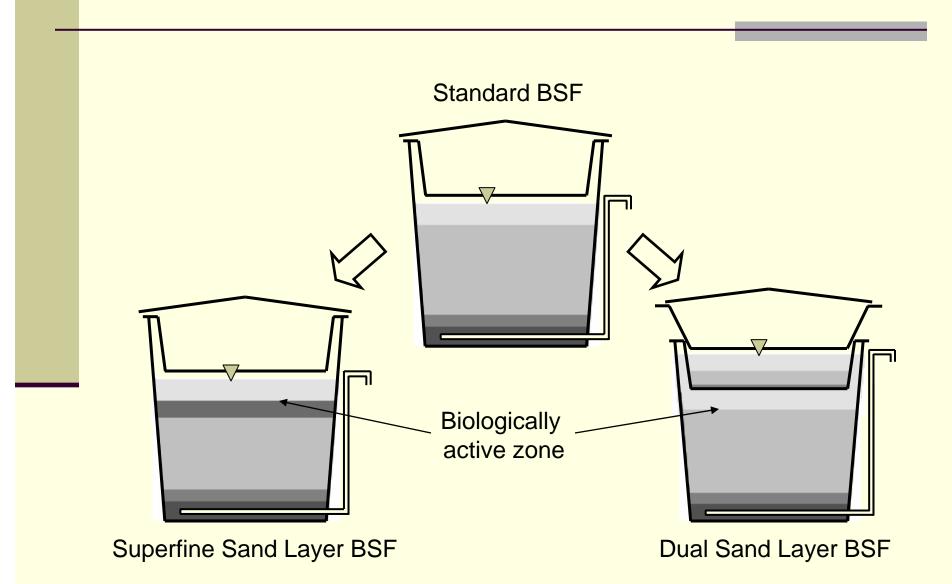
Intermittent slow sand filtration

- Mechanical filtration of particles
- Chemical/biological oxidation of organic matter

Biosand Filter Technology

Low turbidity source water, <50 NTU</p>


- Pathogen reduction
 - Bacteria: 1-log 3-log
 - Viruses: 0.5-log 3-log
 - Protozoa: 2-log 4-log

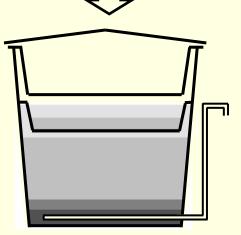

Turbidity reduction85% - 95%

High turbidity source water, >50 NTU
 Not known

- Goal: reduce turbidity, thereby pathogen contamination
 - Sedimentation too slow
 - Coagulation & flocculation too expensive
 - Additional filtration
 - Roughing filtration too big/complicated
 - Finer sand (0.7 mm) worth investigating
 - Additional sand (second layer) worth investigating

- Superfine Sand Layer BSF
 - Increased turbidity removal 16%
 - Microbial removal:
 - Total coliform > 85%
 - (*E. coli* > 83%)
 - Frequent cleaning disturbs biology
- Dual Sand Layer BSF
 - Increased turbidity removal 38%
 - Microbial removal:
 - Total coliform > 95%
 - (*E. coli* > 85%)
 - Frequent cleaning has minimal disturbance on biology

- Superfine Sand Layer BSF


 Increased turbidity removal 16%
 Microbial removal: Total coliform > 85% (*E. coli* > 83%)
 Frequent cleaning disturbs biology

 Dual Sand Layer BSF
 - Increased turbidity removal 38%
 - Microbial removal:
 - Total coliform > 95%
 - (*E. coli* > 85%)
 - Frequent cleaning minimal disturbance to biology

Dual Sand Layer BSF

- Design optimization tests
 - Sand layer depth
 - Upper sand layer 3 cm
 - Lower sand layer
 - 3-day cleaning program
 - Filling frequency
 - Twice per day
 - Filling volume
 - Double filter pore volume
 - Dissolved oxygen concentration profile
- Cost of filter
 - Unmodified ~\$17
 - Modified ~\$18

Dual Sand Layer BSF

Design optimization - results

- Dual sand layer higher indicator bacteria removal than control filter
 - Turbidity >93%
 - *E. coli* >97%
 - Total coliform >71%
- 3-day cleaning program
 - No effect on performance
- Increased filling frequency
 - Decreased performance
- Increased filling volume
 - Decreased performance
- Dissolved oxygen
 - Oxygen reached lower sand layer for biological activity

Recommendations

Dual Sand Layer BSF

- High turbidity reduction
- Efficient microbial reductions
- Frequently cleaning has minimal disturbance on biologically active zone
- Achieved with low-cost modifications
- Dual sand layer BSF recommended for further testing

Presentation Overview

Aims of research

Part I

- Biosand filter (BSF)
 - Overview of BSF technology
 - Design modification options research
 - Selected design optimization
 - Recommended BSF design

Part II

Safe filtrate storage

- Necessity for safe filtrate storage
- Safe storage options
- Recommended safe storage system
- Integrated BSF and safe filtrate storage system

Necessity for Safe Filtrate Storage

- Protect filtrate from recontamination from dirty hands, cups and utensils
- Prevent access to animals and children
- Critical to success and sustainability of biosand filter

Safe Storage Options

Safe storage vessel

- Jerry can
- Plastic bucket with lid
- Dispenser tap
- Low cost
- Durable
- Jerry can
 - Difficult to fit tap
 - Bought recycled plastic impregnated with palm oil
- Plastic bucket with lid
 - Easy to fit tap
 - Bought clean

Safe Storage Options

Safe storage vessel

- Jerry can
- Plastic bucket with lid
- Dispenser tap
- Low cost
- Durable
- Jerry can
 - Difficult to fit tap
 - Bought recycled plastic impregnated with palm oil
- Plastic bucket with lid
 - Easy to fit tap
 - Bought clean

Safe Filtrate Storage Recommendations

- High BSF flow rate villagers did not store filtrate
 - Teach filtering water only as required
- Collect filtrate in safe storage bucket with lid and tap

Presentation Overview

Aims of research

Part I

- Biosand filter (BSF)
 - Overview of BSF technology
 - Design modification options research
 - Selected design optimization
 - Recommended BSF design

Part II

- Safe filtrate storage
 - Necessity for safe filtrate storage
 - Safe storage options
 - Recommended safe storage system
- Integrated BSF and safe filtrate storage system

Integrated Biosand Filter and Safe Filtrate Storage System

In areas with high turbidity water, the following system is proposed for further research:

Dual Sand Layer Biosand Filter

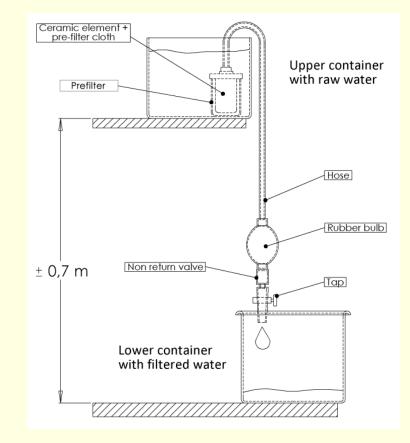
Teach use of filter only when water is required

Safe collection of BSF filtrate


Sara Ziff

Siphon Filter Assessment for Northern Ghana

Siphon Filter


- Household ceramic water filter
- •Based on ceramic candle filter design
- •Fast flow rate (3-5 L/hour)
- Low cost (Current ~ US\$10;
 Future ~ US\$5)
- •Effective: 99.999% removal found by independent lab

Siphon Filter Use

To Use:

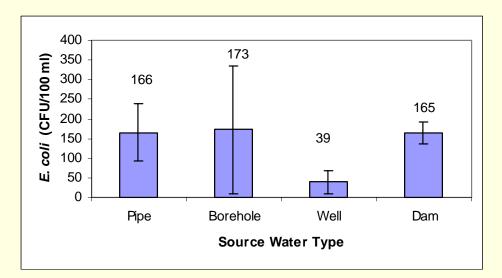
- Place ceramic element in elevated upper container
- Place tap in lower container
- Press bulb to start flow, using siphon effect

Conventional Set-up

Siphon Filter Maintenance

- Filter clogs periodically due to particles
- Backwashing restores flow
- Cloth pre-filter
- At a certain point, scrubbing needed

End-of-life gauge tells when element too thin


Objective: To which types of households should PHW market the siphon filter?

- Method: Ghana Field Study
- 24 siphon filters distributed to households
- Household types:
 - Iower and upper class
 - turbid and low turbidity water sources
- Water quality testing
- Effective Use survey

Water Quality Findings Source water characterization

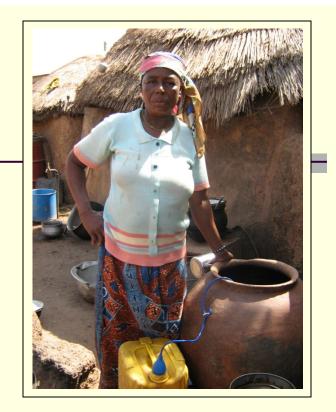
- 48 total source water samples
 - Pipe, borehole, well, dam
- 58% "improved" sources, 42% "unimproved" sources
- Overall high levels of *E. coli*
- Intermediate to high risk level¹

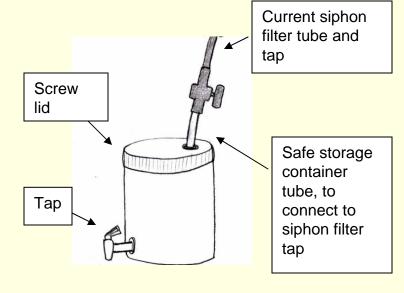
1 World Health Organization, (1997) Guidelines for Drinking Water Quality, Vol. III, Surveillance and Control of Community Supplies. 2nd Ed. Geneva: WHO.

Water Quality Findings Filter Performance

- Reported values do not include 6 samples suspected of recontamination
- 90.7% avg. removal of total coliform
- 94.1% avg. removal of E. coli
- Turbidity removal influenced by ceramic particle leaching
 - Occurs during first use of filter
 - Aesthetic effect

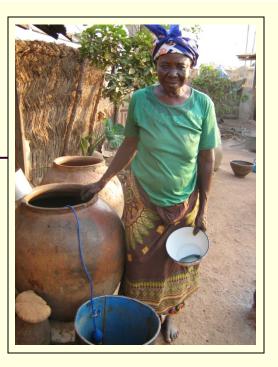
Water Quality Findings Recontamination

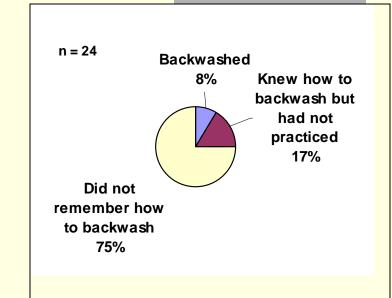

Initially, thought could avoid possible recontamination:



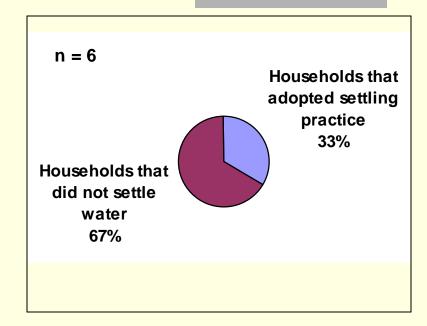
- filtered water samples taken from tap
- However, filtered water sometimes had higher levels of coliform than household stored water
- Two possible causes:
 - (1) bacterial regrowth
 - (2) taps resting in dirty lower water
 - containers
- Thought to be latter cause, but more research needed

Recommendation Safe Storage Container


- Now: lower containers usually buckets or jerry cans →
 - Difficult to keep clean
- Siphon filter needs safe storage container
 - Maintain microbial quality of filtered water
- Recommended design \rightarrow
- Could be marketed with siphon filter


Effective Use Findings Large Clay Pots as Upper Containers

- Large clay pots often used as water storage containers
- Not easily elevated
- However, distance between upper water level and tap sufficient if clay pot full
- Recommendation: Pictorial instructions for large clay pot users


Effective Use Findings Backwashing/Scrubbing

- Backwashing and scrubbing process not well understood
- 75% of households did not understand backwashing →
- Scrubbing better understood
 - More intuitive?
- 33% scrubbed the filter during study
 - Source water for all was turbid
 - Backwashing not performed
 - Over-reliance on scrubbing will shorten life of ceramic element
 - Esp. for turbid water

Effective Use Findings Settling

- Reduces turbidity
- Decreases necessary frequency of scrubbing
- Only 33% of users drinking dam water throughout study settled water
- Indicates settling not readily adopted

Overall Findings Middle vs. Lower Class

- Lower class households often drank highly turbid water
- However, class not found to influence how effectively filters were used

Overall Findings High vs. Low Turbidity Water

- High turbidity water:
 - Filters clogged frequently
 - Study participants did not consistently maintain filter (backwashing, settling)
- Low turbidity water:
 - Filter maintenance less crucial
 - Filter clogged infrequently even with little maintenance

Comparison of Siphon Filter to Other Options

- Established treatment options considered for marketing by PHW:
 - Siphon filter
 - Chlorine
 - Alum (coagulant)
 - Kosim ceramic pot filter

Comparison of Siphon Filter to Other Options Low Turbidity

	Treatment Option	Pros	Cons	
	Siphon Filter	Low cost	Safe storage not	
		Small	included	
		Fast flow rate		
	Kosim Pot Filter	Integrated safe storage	Higher cost	
			Large	
			Slow flow rate	
	Siphon Filter	Infrequent purchase	Recontamination	
		No wait	issue	
		Fast flow rate		
	Chlorine	Effective disinfection	Consumable	
			Wait required	
			Disinfection byproducts	

Comparison of Siphon Filter to Other Options High Turbidity

Treatment Option	Pros	Cons Extensive maintenance	
Siphon Filter	Infrequent purchase		
	Low cost		
		Recontamination issue	
Alum plus Chlorine	Simple	Consumable	
	Effective disinfection	Relatively expensive	
		Disinfection byproducts	
Siphon Filter	Cleaning options other than scrubbing	Extensive maintenance required	
	Fast flow rate		
Kosim Pot Filter	Less maintenance required	Scrubbing only cleaning option	
		Slow flow rate	

Recommendations to PHW

- More research needed with safe storage container to resolve recontamination
- Siphon filter education:
 - Detailed literature
 - Pictorial and technical English/translated versions
 - Specialized training
- Turbid water users:
 - Advise settling
 - Simple, free
 - Suggest alum
 - < US\$4.50/year</p>
 - However, may be too much of a hassle/cost

Recommendations

Choice of treatment option is not clear-cut, especially for users of highly turbid water
PHW should discuss options with potential buyers

Assessment of Rainwater Harvesting in Northern Ghana

David Barnes

Overview

- Introduction
- Objectives
- Current Status
- Economic
 - Cost/m³
- Technical
 - Reliability
- Water Quality Analysis
 - Tank/Cistern Water Quality
- Conclusions/ Recommendations

Introduction

Objective

- Assess the current state of rainwater harvesting
- Assess performance and potential for scaling up

Methods

- RWH Technical Surveys
- Household surveys for Presbyterian Tank Program household RWH systems
- Water quality sampling
 - 3M Petrifilm and Colilert
- Pricing of system components
 - Interviews with contractors, NGO's, local government

Current Status of Rainwater Harvesting in Northern Ghana

Three NGO's

- Schools, Hospitals/Health Clinics
 - World Vision
 - New Energy
- Households
 - Presbyterian Church and Pure Home Water
- Government program at school's
- Do-it-yourself informal rainwater harvesting
- Two rainwater harvesting systems >50 yrs old
 - Savelugu Hospital
 - Veterinary College

System Designs

Three Design's

- 10m³ Ferrocement Tank
 \$708 US
- 30m³ Cement Block Tank
 - **\$2750 US**
- 75m³ Cement Block
 Tank-Octagonal
 - \$3500 US

Ability to Pay for Household RWH

Estimated as 5% of annual income¹

- Urban= \$64 USD/yr
- Rural= \$26 USD/yr

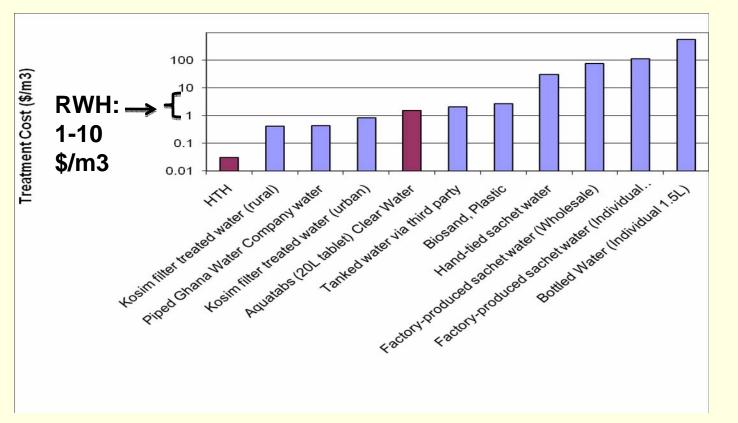
Presbyterian Tank Program with no interest
 \$35 USD/yr (\$708 USD/20 years)

Rural unaffordable, urban affordable

1 McPhail, A.A. (1993) The Five Percent Rule for Improved Water Supply: Can Households Afford More? World Dev., 21 (6), 963–973.

Presbyterian Tank Program

			Demand Scenario 1	Demand Scenario 2	Scenario 1	Scenario 2
# of		Roof Area	Reliability	Reliability	Unit Cost	Unit Cost
	Users	(ft^2)	(5 L/day/capita)	(20 L/day/capita)	(USD/m^3)	(USD/m^3)
High	7	772	99.9%	78%	\$2.77	\$0.89
Average	14	369	96%	26%	\$1.48	\$1.38
Low	20	200	43%	5%	\$4.13	\$8.62


- Various reliability and demand scenarios and their resulting unit costs per cubic meter
- No discounting

Community RWH sites

[]							
Tank Name	Rooftop Area (ft^2)	Storage Capacity (ft^3)	Demand (gal/day)	Reliability %	Cost (USD)	Unit Cost (USD/m^3)	
World Vision	12149	1766	433	68	8333	\$1.02	
Pong Tamale Health Clinic	500	18	4.2	75	300*	\$3.45	
Pong Tamale Vocational School (1)	612	35	262	5	500*	\$1.38	
Pong Tamale Vocational School (2)	748	35	262	6	500*	\$1.12	
Pong Tamale Health Center	753	2649	50	91	3500	\$2.78	
Savelugu Hospital	819	2649	262	11	3500	\$4.40	

* Cost estimated, tank cost unknown

Alternative Technologies

Adapted from Murcott et al., 2008

Design Issues

- Dead Storage
- Leaky taps/tanks
- Guttering!
- Expense and Subsidy
 - Tank Cost
- Maintenance

Cost Competitiveness

- If capital is available, RWH systems are cost competitive with alternative technologies with no discounting
- Ability to Pay indicates that average rural residents would be unable to afford Presbyterian 10m³ tank, even without interest.
- Currently almost entirely subsidized
 - Sustainability and upscale?

Water Quality

Presbyterian Tank Program

- 42% (6 out of 14) positive for total coliform contamination greater than 10 CFU/100 ml
- 14% (2 out of 14) positive for *E.coli* contamination greater than 10 CFU/100 ml
- 100% of fetched water samples contaminated
- Recommend use of filter
 - Kosim
- Could be used with rainwater and for filtration of supplementary source (i.e. dugout)
- Further water quality investigations should be conducted

Recommendations

Low-hanging fruit

- Fully gutter existing systems to improve reliability
- Suggest water filtration with RWH programs
 - Can also use with supplementary source
- Install guttering where water tanks are installed
 - Schools, hospitals, community centers
- Address design issues to improve efficiency
 - Recommended where no improved water source available (bore, piped)

Recommendations for PHW, Northern Ghana

- Further Research on New Household Water Treatment Options
 - Dual Sand Layer Biosand Filter + safe filtrate storage
 - Effective microbial reductions in high turbidity water
 - Low-cost modification to standard BSF
 - Siphon Filter
 - Resolve recontamination issue, then,
 - Recommended for treating low turbidity water
 - Compares favorably to other PHW products
- Water Scarcity
 - Rainwater harvesting
 - Expensive, supplemental technology
 - Recommended where no improved water source available and where water storage tanks required anyway
 - Competitive with other technologies on a unit cost basis
 - Capital investment required

Thank you

Questions are welcome!